Sulfolipid profiles of Microcystis aeruginosa and cyanobacterial blooms as an indicator of P availability

Robbie M. Martin, Maddie K. Denney, Helena L. Pound, Justin D. Chaffin, George S. Bullerjahn, Robert M. McKay, Katarina A. Jones, Hector F. Castro, Shawn R. Campagna, Steven W. Wilhelm

Research output: Contribution to conferenceAbstractpeer-review

Abstract

While phosphorus (P) scarcity can limit primary productivity in lakes, its oversupply can lead to the formation of cyanobacteria-dominated algal blooms. P availability influences bloom dynamics and can be seasonally limiting, even in eutrophic lakes. Marine phytoplankton alter their lipid profile by increasing sulfolipids when P is limiting. We asked whether Microcystis spp. respond in a similar manner. The ratio of sulfoquinovosyl diaclyglycerol (SQDG) to phosphatidylglycerol (PG) was used to examine lipid remodeling. In batch cultures of M. aeruginosa, the SQDG:PG ratio increased from ~0.9 to ~3.3 with decreasing initial P concentration. In P-limited Lake Erie mesocosms, SQDG:PG increased in controls from ~6 to ~11 after 48 hr, while P-addition decreased the ratio from ~6 to ~3. In non-P-limited mesocosms, the ratio was unchanged after 48 hr and P-addition treatments had no effect. In Lake Erie in situ measurements, SQDG:PG showed an inverse correlation with total dissolved P. There was no correlation with either soluble reactive P or N:P ratio. This study demonstrates that Microcystis remodels its lipid profile in response to P scarcity, providing a potential short-term, time-integrating marker of nutrient history for cyanobacterial populations during fresh water blooms.

Original languageAmerican English
StatePublished - May 25 2022

Cite this